Автономная некоммерческая организация «Ивановостройиспытания»

Аккредитованная испытательная лаборатория РОСС. RU. 21cл15

153029 г.Иваново, ул.Минская, 3

тел. 37-95-46

УТВЕРЖДАЮ

«Ивановостройиспытания»

Л.Б. Калинина

« 4 жесентября 2004 г.

« 4 » сентября 2004 г.

г. Иваново

Протокол № 58 испытаний внутренней ограждающей конструкции на звукоизоляцию

На 2-х листах

- 1. Испытания проведены испытательной лабораторией АНО «Ивановостройиспытания» по заказу ОАО «Ярославский завод силикатного кирпича» по договору № 37 от 29 июля 2004 г.
- 2. Испытания проведены 4 сентября 2004 г. в натурных условиях в помещении ОАО «Ярославский ЗСК» (г. Ярославль, Силикатное шоссе, д.5). Испытательное помещение состоит из помещения высокого уровня (КВУ) объемом 22,5 м 3 и низкого уровня (КНУ) объемом 20,3 м 3 , смежных по горизонтали и разделенных испытываемой конструкцией площадью 8,1 м 2 .

Испытываемая ограждающая конструкция изготовлена Заказчиком в виде межквартирной перегородки из блоков силикатных стеновых (межквартирных) производства ОАО «Ярославский ЗСК» по ТУ 5741-003-05306123-2002, размером 249х498х115 мм, имеющих следующие характеристики:

- плотность в высушенном состоянии 1290 кг/м³;
- пустотность 23%;
- содержание керамзитового гравия 26%;
- прочность при сжатии 150 кгс/см².

После изготовления ограждающая конструкция выдержана в естественных условиях 12 суток. Затем обе поверхности ограждающей конструкции были зашпаклеваны Заказчиком (слой шпаклевки – 3...4 мм), оклеены обоями и выдержаны в естественных условиях 2 суток.

Испытания проведены при температуре воздуха в испытательном помещении - 24 °C и относительной влажности воздуха – 83 %.

- 3. Испытания проведены в соответствии с требованиями нормативной документации: ГОСТ 27296-86 «Защита от шума в строительстве. Звукоизоляция ограждающих конструкций. Методы измерения.»
- ГОСТ 26417-85 «Материалы звукопоглощающие строительные. Метод испытания в малой реверберационной камере.»

СТ СЭВ 4867-84 «Защита от шума в строительстве. Звукоизоляция ограждающих конструкций. Нормы.»

- 4. В испытаниях использованы оборудование и средства измерения:
- анализатор шума и вибрации SVAN 912AE
- источник шума образцовый А ХФПИ 3.830.002.
- 5. Результаты измерений приведены в таблице и на рисунке.

Частота F, гц	давл	вень звукового вения , дБ	Время реверберации	Изоляция воздушного	Нормативная кривая	Смещенная нормативная	Отклонение R _{н.с} -R, дБ
	КВУ	КНУ	в КНУ Т, с	шума R, дБ	R _н , дБ	кривая R _{н.с} , дБ	
100	71,9	40,6	2,46	39,2	33	33	-6,18
125	67,0	33,1	1,95	40,7	36	36	-4,68
160	69,4	35,7	1,88	40,5	39	39	-1,46
200	68,6	35,7	3,7	42,5	42	42	-0,51
250	72,6	34,3	3,15	47,2	45	45	-2,19
315	72,4	38,3	1,83	40,7	48	48	7,29
400	74,4	35,2	2,1	46,4	51	51	4,59
500	77,6	36,7	1,8	47,4	52	52	4,63
630	79,0	36,5	1,8	49,0	53	53	3,99
800	79,2	34,2	2,1	52,1	54	54	1,91
1000	78,5	35,6	2,13	50,0	55	55	4,96
1250	79,8	32,1	1,68	53,8	56	56	2,20
1600	82,0	32,2	2,16	57,1	56	56	-1,09
2000	83,0	33,4	2,25	57,0	56	56	-1,01
2500	83,9	32,2	2,04	58,7	56	56	-2,70
3150	84,7	32,4	2,2	59,7	56	56	-3,66

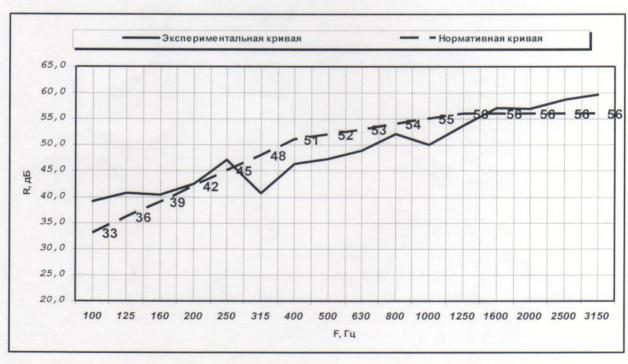


Рисунок. Частотные зависимости R:

Средняя величина неблагоприятных отклонений ($R_{\text{н.с}}$ -R) составляет 1.85 дБ. Индекс изоляции воздушного шума испытуемой конструкции $R_{\text{w}} = 52$ дБ.

Руководитель ИЛ «Ивановостройиспытания» _ *АЯ*

Л.Б. Калинина

Зам. рук. ИЛ «Ивановостройиспытания»

А.В. Моргунов

Инженер-испытатель

Д.В. Щеголев

протокол

испытаний блока силикатного стенового обыкновенного

г.Иваново

28.12.2002г.

- 1. Наименование лаборатории и номер аттестата аккредитации. Учреждение ФНПР «НИИОТ в г. Иваново». Лаборатория промышленной акустики. Свидетельство о государственной аккредитации научной организации Министерства науки и технологий РФ № 1565 от 27.07.1994г., серия АНО 001832.
- 2. Наименование, юридический адрес организации-заказчика испытаний. ОАО «Ярославский завод силикатного кирпича», г. Ярославль, ул. Силикатная.
- **3.**Наименование испытываемой продукции. Блок силикатный стеновой обыкновенный, размером: $498 \times 249 \times 115$ мм, средняя плотность — 1520 кг/м³, ТУ 5741-003-05306123-2002г.
- 4. Нормативные документы, в соответствии с которыми проводились испытания, расчёты и оценка звукоизоляции блока стенового силикатного. СТ СЭВ 4867-84 «Звукоизоляция ограждающих конструкций» Испытательная (реверберационная) камера отвечает требованиям ГОСТ 27296. ГОСТ 27296-87 «Защита от шума в строительстве. Звукоизоляция ограждающих конструкций. Методы измерения.»
- 5. Дата проведения испытаний 26.12.2002г.
- 6.Испытания проведены в соответствии с договором о взаимодействии от 21.03.2002г. в присутствии руководителя органа по сертификации ОС «Ивановостройсертификация» Морозовой Л.Н. и руководителя аккредитованной испытательной лаборатории «Ивановостройиспытания» Калининой Л.Б.
- 7. Условия проведения испытаний: Температура окружающего воздуха 21° С, относительная влажность воздуха 63%. Отклонений от процедур проведения испытаний нет.

8. Результаты испытаний.

f,ru	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
L1,								Без	блов	ca						
дБ	64	63	68	69	68	71	73	74	76	76	74	78	80	82	83	84
L2,								С б.	поко	M						
дБ	34	30	33	32	32	38	37	31	29	26	23	26	28	30	32	34
R(f),дБ	30	33	35	37	36	33	36	43	47	50	51	52	52	52	51	50

9.Заключение по изоляции воздушного шума блока силикатного стенового обыкновенного:

Нормируемым параметром звукоизоляции является индекс изоляции воздушного (R_W) . Индекс изоляции воздушного шума определялся путём вертикального смещения нормативной кривой частотной характеристики по CT СЭВ 4867-84.

-индекс изоляции воздушного шума R_W = 47дБ

Полученное значение $R_{\rm W}$ для стенового силикатного блока в целом соответствует требованиям СТ СЭВ 4867-84 «Звукоизоляция ограждающих конструкций. Нормы.»

Звукоизоляция блоком силикатным стеновым воздушного шума транспортного потока (R_{Атран}) определялась согласно ГОСТ 26602.3-99 раздел 5.4.

-изоляция воздушного шума

транспортного потока, дБА,

 $R_{Aтран} = 41дБА$

Блоки силикатные стеновые обыкновенные данной толщины требуют доработки для снижения шума при их ненользовании.

От исполнителя:

Зам. заведующего патеритории

Инженер

/В.Ф.Дробышевская /

/А.Н.Архипов /

Руководитель органа по сертификации

«Ивановостройсертификация», экспера-

Руководитель испытательной

лаборатории «Ивановостройнспитания», акторот

/Л.Н.Морозова /

/Л.Б.Калинина /

Приложение к протоколу от 28.12.2002г.

Испытания блока силикатного стенового обыкновенного проводились в реверберационной камере акустического комплекса учреждения ФНПР — «НИИОТ в г.Иваново» в соответствии с договором от 21.03.2002г. согласно ГОСТ 27296-87. «Звукоизоляция ограждающих конструкций. Методы измерения». Измеритель шума и вибрации «ВШВ-003-М2», свидетельство о поверке № 194, выдано 22.04.2002г. ФГУ «Ивановский центр стандартизации, метрологии и сертификации» Госстандарта России.

Определение изоляции воздушного шума блока в лабораторных условиях проводилось последовательными измерениями и сравнением средних уровней звукового давления в помещениях высокого и низкого уровней реверберационной камеры в частотном диапазоне от 100 до 3150 Гц со следующими среднегеометрическими частотами третьоктавных полос: 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150.

Результаты испытаний обрабатывались следующим образом: средние уровни звукового давления L_{ml} и L_{m2} , дб, в помещении испытательной камеры определялись согласно ГОСТ 27296 по формуле:

$$L_{m} = 101g_{j=1}^{n}(1/n \cdot \Sigma 10^{0,1Lj}), \tag{1}$$

где L_j – уровень звукового давления в j-й точке, дб;

n – число точек измерения.

Изоляцию воздушного шума испытываемой конструкции $R_{m\cdot}$ Дб, определяем по формуле:

$$R_m = L_{ml} - L_{m2} + 10 \lg S/A_2,$$
 (2)

где L_{ml} , L_{m2} — средние уровни звукового давления в испытательной камере для испытываемого блока;

S – площадь поверхности испытываемого блока, M^2 ;

 A_2 – эквивалентная площадь звукопоглощения образцов, м²

Эквивалентную площадь звукопоглощения помещения низкого уровня A_2 , m^2 , определяют по значению времени реверберации T_2 , измеренному в

соответствии с нормативной документацией на реверберационную камеру, по формуле

$$A_2 = \frac{0.16V_2}{T_2},\tag{3}$$

где V₂ – объём измерительного помещения низкого уровня (реверберационная камера), м3;

Т2 - время реверберации, с;

0.16 - эмпирический коэффициент, с/м.

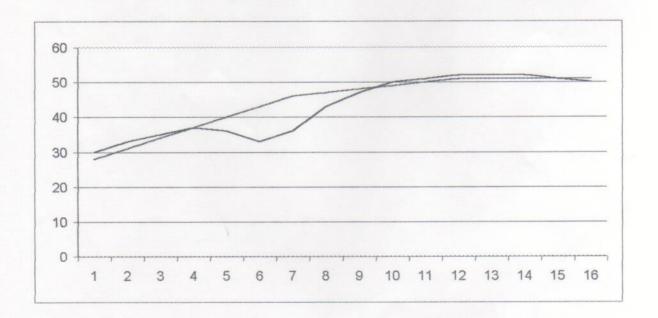
Звукоизоляцию блоков определяем по формуле:

$$R_{Amp} = 75 - 10 \lg \sum_{i=1} 10^{0.1(L_i - R_{mi})}$$
, (4)

по ГОСТ 26602.3-99

где L_i - скорректированный уровень эталонного шума потока городского транспорта в і-й третьоктавной полосе частот, дБ, определяемой по таблице 1 ГОСТ 26602.3-99;

R_{mi} – изоляция воздушного шума данных конструкций, определённых по формуле (2).


Индекс изоляции воздушного шума испытываемого блока определён по СТ СЭВ 4867-84 путём сопоставления полученной в результате измерений частотной характеристики изоляции воздушного шума R(f) с оценочной кривой.

Результаты измерений и расчётов сведены в таблицу и оформлены протоколами согласно ГОСТ 26602.3-99 раздел 6.

Результаты расчётов R дока силикатного стенового обыкновенного

162	yJIbia	IDI Pa	01010	DICAT	age and the second second second					_	COMM					01.50
f	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
L_{m1}	64	63	68	69	68	71	73	74	76	76	74	78	80	82	83	84
L_{m2}	34	30	33	32	32	38	37	31	29	26	23	26	28	30	32	34
R _{mi}	30	33	35	37	36	33	36	43	47	50	51	52	52	52	51	50
Li	55	55	57	59	60	61	62	63	64	66	67	66	65	64	62	60
A ₂								5	.33							
T ₂									3							
V_2								1	00							
S								1	,54							
R _{ATPAH}									11					-		

Nº			смещённая		
спектральных		нормативная	нормативная		
частот	f,rų	кривая	кривая	R(f)	Расчёт
1	100	33	28	30	2
2	125	36	31	33	2
3	160	39	34	35	1
4	200	42	37	37	0
5	250	45	40	36	-4
6	315	48	43	33	-10
7	400	51	46	36	-10
8	500	52	47	43	-4
9	630	53	48	47	-1
10	800	54	49	50	1
11	1000	55	50	51	1
12	1250	56	51	52	1
13	1600	56	51	52	1
14	2000	56	51	52	1
15	2500	56	51	51	0
16	3150	56	51	50	-1
					1,87

федеральное государственное бюджетное учреждение «Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук» (НИИСФ РААСН)

ПРОТОКОЛ ИСПЫТАНИЙ №30/60360 от 07.09.2016

Основание для проведения испытаний – Договор № 60360(2016) от 31.08.2016 на проведение испытаний.

Описание испытываемой конструкции: перегородка из двух рядов плит перегородочных силикатных, размером 498х70х248 мм, средней плотности 1800 кг/м³, с воздушным промежутком в 40 мм.

Производитель продукции: Открытое акционерное общество «ЯРОСЛАВСКИЙ ЗАВОД СИЛИКАТНОГО КИРПИЧА» (ОАО «ЯЗСК»)

Образец представил: ОАО «ЯЗСК»

Нормативные документы на методику измерений: ГОСТ Р ИСО 10140-1-2012; ГОСТ Р ИСО 10140-2-2012; ГОСТ Р ИСО 10140-4-2012; ГОСТ Р ИСО 10140-5-2012; ГОСТ 27296-2012

Дата испытаний - 02 сентября 2016 г.

Методика испытаний и обработки результатов

Измерения осуществлялись в соответствии с ГОСТ 27296-12 «Защита от шума в строительстве. Звукоизоляция ограждающих конструкций. Методы измерения» сотрудниками НИИСФ — зав. отделом Щуровой Н.Е и ведущим инженером Любаковой Е.В. с помощью приборов, имеющих действующие свидетельства о государственной поверке.

В «камере высокого уровня» (КВУ), имеющей объем $V = 200 \text{м}^3$, устанавливался

источник шума фирмы «Брюль и Къер» (Дания), создающий широкополосный «белый» шум высокого уровня и постоянной мощности во всем измерительном диапазоне частот. Источник шума располагался последовательно в двух точках – в углах помещения на расстоянии не менее 2,0 м от стен КВУ.

В смежном помещении, «камере низкого уровня» (КНУ), имеющем объём V=112 m^3 , регистрировалось звуковое поле, уровни звукового давления в котором зависят от звукоизоляции разделяющей помещения исследуемой конструкции.

Непосредственные измерения уровней звукового давления в помещениях регистрировались анализатором шума типа 2250 (Брюль и Къер, Дания, зав. № 2590525).

В помещении «низкого уровня» измерялось также время реверберации (T, с) необходимое для определения величин эквивалентной площади поглощения, используемых для расчета частотной характеристики изоляции воздушного шума исследуемыми конструкциями. Источник шума располагался в помещении «низкого уровня» в двух точках — в углах помещения на расстоянии не менее 2.0м.

Измерения уровней звукового давления в третьоктавных полосах частот (в Γu) проводились в каждом из помещений («высокого» и «низкого» уровней) в шести точках, для каждого положения источника шума.

По результатам измерений изоляция воздушного шума $(R, \partial E)$ конструкциями для каждой третьоктавной полосы частот была рассчитана по формуле:

$$R=L_{m1}-L_{m2}+10lgS/A_2$$
, (∂E)

где: L_{m1} и L_{m2} - средние уровни звукового давления в помещениях высокого и низкого уровней соответственно (∂E);

 $A_2 = \frac{0.16V}{T}$, м²- эквивалентная площадь звукопоглощения помещения низкого

уровня;

V – объём помещения низкого уровня (M^3);

T – время реверберации в помещении низкого уровня (c).

Для рассматриваемой конструкции по методикам, изложенным в актуализированной редакции СНиП 23-03-2003 «Защита от шума» (СП 51.13330.2011) был определен индекс изоляции воздушного шума R_w , дБ.

Результаты испытаний приведены в Приложении 1 к протоколу № 30/60360 от 07.09.2016 г.

ЗАКЛЮЧЕНИЕ

Индекс изоляции воздушного шума перегородки из двух рядов плит перегородочных силикатных, размером 498x70x248 мм, средней плотности 1800 кг/м³, с воздушным промежутком в 40 мм. составил $R_w = 56$ дБ.

По своим акустическим характеристикам исследованная перегородка отвечает требованиям СП 51.13330.2011 (актуализированная редакция СНиП 23-03-2003 "Защита от шума") и может быть рекомендована в строительстве для сооружения межквартирных перегородок.

Вед. научн. сотрудник

ly -

Частотные характеристики изоляции воздушного шума конструкции, R(f)

Описание конструкции:

Перегородка из двух рядов плит перегородочных силикатных, размером 498x70x248 мм, средней плотности 1800 кг/м 3 , с воздушным промежутком в 40 мм.

Размер: 10 м²

Условия испытаний:

Объем камеры высокого уровня –200 м³.

Объем камеры низкого уровня – 112 м³.

Форма камеры - трапецеидальная с непараллельными стенами.

Температура воздуха -20 $^{\circ}$ C.

Относительная влажность воздуха – 60%.

Таблица 1

	Таблица
Среднегеометрические	Изоляция
частоты 1/3- октавных полос	воздушного
f, Гц.	шума R(f), дБ
100	43,8
125	44,9
160	45,7
200	51,9
250	51,7
315	51,7
400	50,7
500	50,5
630	50,0
800	53,1
1000	54,9
1250	59,1
1600	60,7
2000	60,6
2500	61,7
3150	63,4
Индекс изоляции воздушного шума, R _w дБ	56

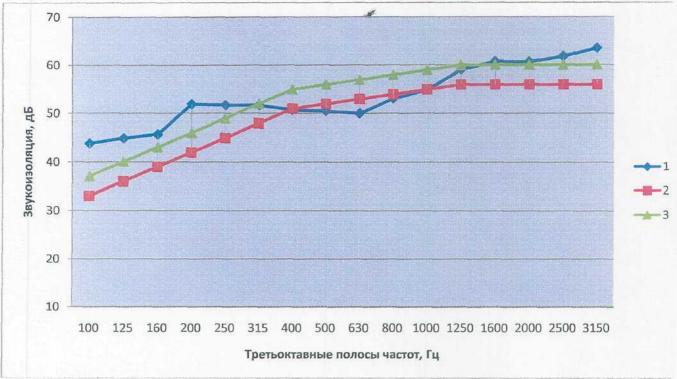


Рисунок 1. Частотные характеристики:

1 - изоляция воздушного шума перегородки,

2 - нормативная частотная характеристика изоляции воздушного шума,

3 — смещенная нормативная частотная характеристика изоляции воздушного шума на + 4 дБ.

Отв. исполнитель

Luz "

федеральное государственное бюджетное учреждение «Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук» (НИИСФ РААСН)

ПРОТОКОЛ ИСПЫТАНИЙ №29/60320 от 25.08.2016

Основание для проведения испытаний — Договор № 60320(2016) от 25.07.2016 на проведение испытаний.

Описание испытываемой конструкции: перегородка из плиты перегородочной силикатной размером 498х70х248, средней плотности 1800 кг/м³

Производитель продукции: Открытое акционерное общество «ЯРОСЛАВСКИЙ ЗАВОД СИЛИКАТНОГО КИРПИЧА» (ОАО «ЯЗСК»)

Образец представил: ОАО «ЯЗСК»

Нормативные документы на методику измерений: ГОСТ Р ИСО 10140-1-2012; ГОСТ Р ИСО 10140-2-2012; ГОСТ Р ИСО 10140-4-2012; ГОСТ Р ИСО 10140-5-2012; ГОСТ 27296-2012

Дата испытаний – 22 августа 2016 г.

Методика испытаний и обработки результатов

Измерения осуществлялись в соответствии с ГОСТ 27296-12 «Защита от шума в строительстве. Звукоизоляция ограждающих конструкций. Методы измерения» сотрудниками НИИСФ — зав. отделом Щуровой Н.Е и ведущим инженером Любаковой Е.В. с помощью приборов, имеющих действующие свидетельства о государственной поверке.

В «камере высокого уровня» (КВУ), имеющей объем V = 200м³, устанавливался

источник шума фирмы «Брюль и Къер» (Дания), создающий широкополосный «белый» шум высокого уровня и постоянной мощности во всем измерительном диапазоне частот. Источник шума располагался последовательно в двух точках в углах помещения на расстоянии не менее 2,0 м от стен КВУ.

В смежном помещении, «камере низкого уровня» (КНУ), имеющем объём V = 112 м³, регистрировалось звуковое поле, уровни звукового давления в котором зависят от звукоизоляции разделяющей помещения исследуемой конструкции.

Непосредственные измерения уровней звукового давления в помещениях регистрировались анализатором шума типа 2250 (Брюль и Къер, Дания, зав. № 2590525).

В помещении «низкого уровня» измерялось также время реверберации (*T*, с) необходимое для определения величин эквивалентной площади поглощения, используемых для расчета частотной характеристики изоляции воздушного шума исследуемыми конструкциями. Источник шума располагался в помещении «низкого уровня» в двух точках – в углах помещения на расстоянии не менее 2,0м.

Измерения уровней звукового давления в третьоктавных полосах частот (в Γu) проводились в каждом из помещений («высокого» и «низкого» уровней) в шести точках, для каждого положения источника шума.

По результатам измерений изоляция воздушного шума (R, ∂E) конструкциями для каждой третьоктавной полосы частот была рассчитана по формуле:

$$R=L_{m1}-L_{m2}+10lgS/A_2$$
, (∂B)

где: L_{m1} и L_{m2} - средние уровни звукового давления в помещениях высокого и низкого уровней соответственно ($\partial \mathcal{L}$);

 $A_2 = \frac{0,16V}{T}$, м²- эквивалентная площадь звукопоглощения помещения низкого

уровня;

V – объём помещения низкого уровня (M^3);

T – время реверберации в помещении низкого уровня (c).

Для рассматриваемой конструкции по методикам, изложенным в актуализированной редакции СНиП 23-03-2003 «Защита от шума» (СП 51.13330.2011) был определен индекс изоляции воздушного шума R_w , дБ.

Результаты испытаний приведены в Приложении 1 к протоколу № 29/60320 от 25.08.2016 г.

ЗАКЛЮЧЕНИЕ

Индекс изоляции воздушного шума перегородки из плиты перегородочной силикатной размером 498х70х248, средней плотности 1800 кг/м 3 составил R_w = 48 дБ.

По своим акустическим характеристикам исследованная перегородка отвечает требованиям СП 51.13330.2011 (актуализированная редакция СНиП 23-03-2003 "Защита от шума") и может быть рекомендована в строительстве для сооружения перегородок между санузлом и комнатой одной квартиры, а также перегородки без дверей между комнатами, между кухней и комнатой в квартире.

Вед. научн. сотрудник

Lyy

Частотные характеристики изоляции воздушного шума конструкции, R(f)

Описание конструкции:

Перегородка из плиты перегородочной силикатной размером 498х70х248, средней плотности 1800 кг/м3

Размер: 10 м²

Условия испытаний:

Объем камеры высокого уровня -200 м³.

Объем камеры низкого уровня – 112 м³.

Форма камеры - трапецеидальная с непараллельными стенами.

Температура воздуха -20 $^{\circ}$ С.

Относительная влажность воздуха - 60%.

	Таблица
Среднегеометрические частоты 1/3- октавных полос f, Гц.	Изоляция воздушного шума R(f), дБ
100	38,5
125	35,2
160	40,0
200	41,2
250	43,5
315	43,5
400	41,8
500	41,2
630	42,1
800	45,1
1000	47,4
1250	49,8
1600	52,4
2000	43,4
2500	53,6
3150	54,8
Индекс изоляции воздушного шума, R _w дБ	48

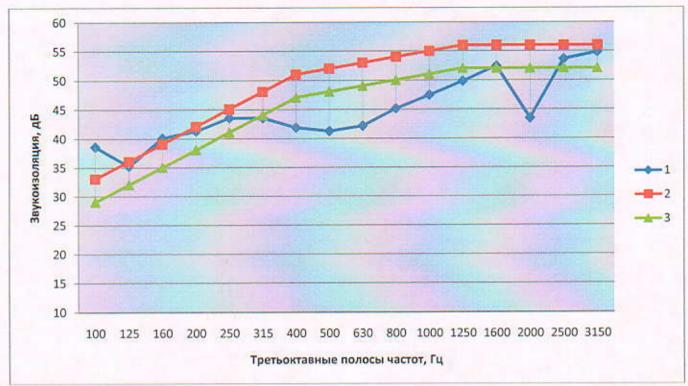


Рисунок 1. Частотные характеристики:

1 - изоляция воздушного шума конструкции,

2 - нормативная частотная характеристика изоляции воздушного шума,

 3 – смещенная нормативная частотная характеристика изоляции воздушного шума на - 4 дБ.

Отв. исполнитель

Gazz

федеральное государственное бюджетное учреждение «Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук» (НИИСФ РААСН)

УТВЕРЖДАЮ Директор НИИСФ РААСН Шубин И.Л.

2015 г.

ПРОТОКОЛ ИСПЫТАНИЙ № 9/60260 от 18.12.2015 г.

Основание для проведения испытаний – договор на проведение испытаний № 60260(2015) от 28.10.2015 г.

Наименование продукции — блоки силикатные стеновые рядовые размером 498х250х498 мм., выпущенные по ГОСТ 379-2015.

Производитель продукции - 150048, ОАО Ярославский завод силикатного кирпича», г. Ярославль, Силикатное шоссе, д.5

Предъявитель образцов — ОАО «Ярославский завод силикатного кирпича» Сведения об испытываемых образцах —

Размер, мм	Пустотность	Средняя плотность, кг/м ³	Марка
498x250x498	3%	1800 кг/м³	M 150

Кладка выполнена с применением клея монтажного «BLOCK»

Испытания на соответствие — требованиям СП 51.13330.2011 Защита от шума (актуализированная редакция СНиП 23-03-2003)

Методика испытаний – ГОСТ 27296-2012

Дата испытаний – 14.12.2015 г.

Методика испытаний и обработки результатов

Измерения осуществлялись в соответствии с ГОСТ 27296-12 «Защита от шума в строительстве. Звукоизоляция ограждающих конструкций. Методы измерения» сотрудником НИИСФ – вед. научн. сотрудником Щуровой Н.Е с помощью прибора, имеющего действующие свидетельства о государственной поверке.

В «камере высокого уровня» (КВУ), имеющей объем V = 200 м³, устанавливался источник шума фирмы «Брюль и Къер» (Дания), создающий широкополосный «белый» шум высокого уровня и постоянной мощности во всем измерительном диапазоне частот.

Источник шума располагался последовательно в двух точках — в углах помещения на расстоянии не менее 2,0 м от стен КВУ.

В смежном помещении, «камере низкого уровня» (КНУ), регистрировалось звуковое поле, уровни звукового давления в котором зависят от звукоизоляции разделяющей помещения исследуемой конструкции.

Непосредственные измерения уровней звукового давления в помещениях регистрировались анализатором шума типа 2250 (Брюль и Къер, Дания, зав. № 2590525).

В камере низкого уровня измерялось также время реверберации (*T*, с) необходимое для определения величин эквивалентной площади поглощения, используемых для расчета частотной характеристики изоляции воздушного шума исследуемыми конструкциями. Источник шума располагался в помещении «низкого уровня» в двух точках — в углах помещения на расстоянии не менее 2,0м.

Измерения уровней звукового давления в третьоктавных полосах частот (в Γu) проводились в каждом из помещений («высокого» и «низкого» уровней) в шести точках, как это предписывает указанный ГОСТ 27296-12, для каждого положения источника шума.

Минимальное расстояние измерительных точек от ограждающих конструкций (стен камер) составляло 0,5 м. Соответственно минимальное расстояние от источника шума составляло 1,0 м. Перед проведением измерений уровней звукового давления в обоих помещениях (при выключенном источнике шума) были проведены измерения уровней фонового шума. Следует отметить, что эти уровни значительно (более чем на 10 дБ) ниже уровней шума во время последующих измерений изоляции воздушного шума исследуемыми конструкциями.

По результатам измерений изоляция воздушного шума (R, ∂B) конструкциями для каждой третьоктавной полосы частот была рассчитана по формуле:

$$R=L_{m1}-L_{m2}+10lgS/A_2$$
, (∂B)

где: L_{m1} и L_{m2} - средние уровни звукового давления в помещениях высокого и низкого уровней соответственно (∂E);

 $A_2 = \frac{0,16V}{T}$, м²- эквивалентная площадь звукопоглощения помещения низкого уровня;

V – объём помещения низкого уровня (M^3);

T – время реверберации в помещении низкого уровня (c).

Для рассматриваемой конструкции по методике, изложенной в п.9.4 актуализированной редакции СНиП 23-03-2003 «Защита от шума» (СП 51.13330.2011) был определен индекс изоляции воздушного шума R_w, дБ **Результаты испытаний** приведены в Приложении 1 к протоколу № 9/60260 от 18.12.2015 г.

ЗАКЛЮЧЕНИЕ

Индекс изоляции воздушного шума конструкции, выполненной из блоков силикатных стеновых, составил R_w =55 дБ.

По своим акустическим характеристикам перегородка отвечает требованиям СП 51.13330.2011 Защита от шума (актуализированная редакция СНиП 23-03-2003) и может быть предназначена для применения в строительстве для возведения межквартирных перегородок и наружных стен.

Частотная характеристика изоляции воздушного шума конструкции 1 R(f) дБ (рис.1), представлена в Приложении 1.

Исполнитель: Вед. научн. сотрудник dy

Частотные характеристики изоляции воздушного шума конструкции R(f)

Описание конструкции:

блоки силикатные стеновые рядовые 498х250х498 мм.

Условия испытаний:

Объем камеры высокого уровня –200 м³.

Объем камеры низкого уровня -112 м^3 .

Температура воздуха -20 $^{\circ}$ С.

Относительная влажность воздуха – 55%.

Таблица 1

	18
Среднегеометрические частоты 1/3- октавных полос f, Гц.	Изоляция воздушного шума R(f), дБ
100	37,3
125	38,9
160	39,8
200	42,8
250	45
315	47
400	48,5
500	51,8
630	53,4
800	56,2
1000	58,4
1250	59,8
1600	61,5
2000	62,5
2500	63,6
3150	67,9
Индекс изоляции воздушного шума, дБ	55

Исполнитель:

Вед. научн. сотрудник

dy

Рис. 1. Частотные характеристики.

Исполнитель: Вед. научн. сотрудник

Elyy

Руководитель работы: доктор технических наук,

декан ИСФ А.А. Кочкин

Исполнители: аспирант, преподаватель, А.В. Киряткова

каф. ПГС

аспирант НИИСФ Н.А. Кочкин

1. Общие данные

Основание для проведения испытаний - договор на проведение испытаний № 18-4 от 21 октября 2016 г.

Наименование продукции:

- а) плита перегородочная силикатная с керамзитом размером 498x115x249 маркой по прочности М150, класса средней плотности 1,2;
- б) плита перегородочная силикатная с керамзитом размером 498x115x249 маркой по прочности М125, класса средней плотности 1,2.

Производитель продукции - 150048, ОАО "Ярославский завод силикатного кирпича", г. Ярославль, Силикатное шоссе, д.5.

Предъявитель образцов - ОАО "Ярославский завод силикатного кирпича".

Дополнительные сведения об испытываемых образцах — кладка выполнена с применением клея монтажного «BLOCK» по методике ЯЗСК[4]. **Испытания на соответствие -** требованиям СП 51.13330.2011 Защита от

шума (актуализированная редакция СНиП 23-03-2003).

Дата испытаний - 21.11.16 - 09.12.16

2. Методика испытания

Большие реверберационные камеры ВоГУ состоят из двух камер: камеры высокого уровня (КВУ) объемом 99 м³ и камеры низкого уровня (КНУ) объемом 57,5 м³, причем КНУ не имеет жесткой связи с КВУ и расположена на отдельно стоящем фундаменте. Время реверберации во всем частотном диапазоне превышает нормативное значение и составляет от 1,2 с. до 7,8 с. Площадь проема составляет 9 м², площадь испытуемого образца 1,2x2,5=3,0 м².

Измерения осуществлялись в соответствии с действующими нормами [1] с помощью шумомера и калибратора, имеющего свидетельства о поверке № СП 1204540, № СП 1204541 [приложение 1].

В реверберационных камерах ВоГУ [приложение 2] акустическая аппаратура состоит из двухканального модульного анализатора 2260 фирмы «Брюль и Къер» в реальном масштабе времени со встроенным генератором

шума, трех усилителей MAKRO 1400 и 8 звуковых колонок QS 152 в камере высокого уровня (КВУ) и 4 звуковых колонок QS 152 в камере низкого уровня (КНУ).

Анализатор 2260 с установленным программным обеспечением специализированной звукометрической платформой становится ДЛЯ измерения звукоизоляции и времени реверберации, он сохраняет в памяти данные и результаты измерений, которые передавались и обрабатывались на компьютере. Данный шумомер позволяет измерять уровень звука в КВУ (уровень L₁, дБ), уровень звука в КНУ (уровень L₂, дБ), уровень фоновых шумов в КНУ (уровень В2, дБ), который используется для коррекции уровня L₂ в расчетах воздушной изоляции, а также время реверберации (T, c) в КНУ. Проводилась серия измерений в 6 точках в каждой камере, чтобы сделать поправку на колебания звукового давления.

Полученный усредненный спектр использовался в расчете воздушной изоляции. Все измерения проводились из аппаратной.

Вычисление изоляции ограждений от воздушного шума (R) выполняли по формуле [1]:

$$R = L_1 - L_2 + 10\lg \frac{s}{A_2},$$

где L_1, L_2 - средние уровни звукового давления в помещениях высокого и низкого уровней, дБ;

S- площадь испытываемой конструкции, M^2 ;

 A_2 - общее звукопоглощение в КНУ, м².

Для рассматриваемой конструкции по методике, изложенной в п. 9.4 [2], был определен индекс изоляции воздушного шума R_w , дБ.

3. Результаты испытаний

Таблица 1.1 — Определение частотной характеристики звукоизоляции перегородки из плит силикатных с керамзитом размером 498x115x249 маркой по прочности М150, класса средней плотности 1,2

Среднегеометрические частоты 1/3 - октавных полос f, Гц	Изоляци	я воздушного и даты замеров	, , , ,
2,0 011102112111 110110 1, 1 4	21.11.16	24.11.2016	28.11.2016
100	42,7	43,7	43,2
125	41,2	43	42,7
160	43,1	44,7	44,4
200	42,1	42,3	42,1
250	40,7	41,1	40,8
315	43	43,5	43,6
400	41,6	42,3	42,1
500	40,7	41,1	40,9
630	44,8	44,5	44,3
800	47,7	48,1	47,7
1000	48,9	49,5	49,2
1250	51,5	50,9	51,2
1600	52,5	52,4	52
2000	54,6	54,4	54,3
2500	56,6	56,8	56,6
3150	58,2	58,3	58,3
Индекс изоляции воздушного шума, дБ	49	49	49
Среднее значение индекса		40	
изоляции воздушного шума, дБ		49	

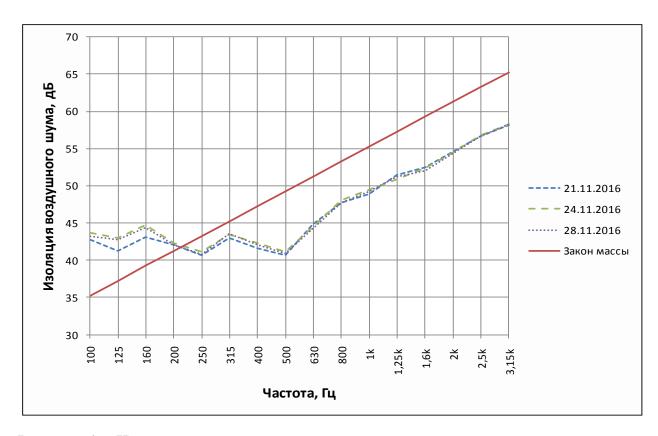


Рисунок 1 — Частотная характеристика звукоизоляции плит силикатных с керамзитом размером 498х115х249 маркой по прочности М150, класса средней плотности 1,2

Таблица 1.2 - Определение индекса изоляции воздушного шума по п. 9.4 [2] перегородки из плит силикатных с керамзитом размером 498х115х249 маркой по прочности М150. класса средней плотности 1.2 – 21.11.2016г.

	ř	VC11V0	TOTALISACT Mapron III	ANOTH TO	II po	11111100	100,	Identa el	ОСДПСИ	розности итгос, масса средней шлотности 1,2 — 21.11.20101.	7, 1111 J	7.1.1	1.50102				
	Параметры				C	Среднегеометрические частоты третьоктавных полос, Гц	еометр	ически	е часто	ты тре:	гьоктаі	зных пс	лос, Гг	ì			
	•	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
H ~	Расчетная частотная характеристика, R, дБ	42,7	41,2	43,1	42,1	40,7	43	41,6	40,7	44,8	47,7	48,9	51,5	52,5	54,6	56,6	58,2
_	Оценочная кривая, дБ	33	36	39	42	45	48	51	52	53	54	55	56	56	56	56	56
	Неблагоприятные отклонения, дБ			-		4,3	ς.	9,4	11,3	8,2	6,3	6,1	4,5	3,5	1,4	l	I
•	Оценочная кривая, смещенная вниз на 3 дБ	30	33	36	39	42	45	48	49	50	51	52	53	53	53	53	53
	Неблагоприятные отклонения от смещенной оценочной					1,3	2	6,4	8,3	5,2	3,3	3,1	1,5	0,5			I
1	Индекс изоляции воздушного шума R _w , дБ								49								

Таблица 1.3 - Определение индекса изоляции воздушного шума по п. 9.4 [2] перегородки из плит силикатных с керамзитом размером498х115х249 маркой по прочности М150, класса средней плотности 1.2 – 24.11.2016г.

	Параметры	100	125	160	200	реднег 250	еометрі	Среднегеометрические частоты третьоктавных полос, Гц	е часто 500	ты трет	размером тругот 1972-гу маркон по прочности и 190, класка средней плотности 1,2 – 24.11.20101. Среднегеометрические частоты третьоктавных полос, Гц 100 125 160 200 250 315 400 500 630 800 1000 1250 1600	вных по	элос, Ги	1	2000	2500	3150
		201	(71	001	200	007	CIC	P P	300	000			0071	1000	7000	-	0010
Расчетная частотная характеристика, R, дБ	P	43,7	43	44,7	42,3	41,1	43,5	42,3	41,1	44,5	48,1	49,5	50,9	52,4	54,4	56,8	58,3
Оценочная кривая, дБ	ſΈ	33	36	39	42	45	48	51	52	53	54	55	56	56	56	56	56
Неблагоприятные отклонения, дБ						3,9	4,5	8,7	10,9	8,5	5,9	5,5	5,1	3,6	1,6		
Оценочная кривая, смещенная вниз на 3 дБ	3 дБ	30	33	36	39	42	45	48	49	50	51	52	53	53	53	53	53
Неблагоприятные отклонения от смещенной оценочной	ЮЙ					6,0	1,5	5,7	7,9	5,5	2,9	2,5	2,1	0,6			1
Индекс изоляции воздушного шума R _w , дБ	ζ«,								49								

Таблица 1.4 - Определение индекса изоляции воздушного шума по п. 9.4 [2] перегородки из плит силикатных с керамзитом размером 498х115х249 маркой по прочности М150. класса средней плотности 1.2 – 28.11.2016г.

	47.	496X113X249 Mapkon 110 II	249 Mal	кои по	прочн	JCTN IN	130, KI	рочности IV130, класса среднеи плотности 1,2 – 28.11.2016г.	еднеи	ПЛОТНО	СТИ 1,2	- 20.1	10107.1				
Ŋō	Параметры				C	реднег	еометр	ически	е часто	гы трел	гьоктае	вных пс	Среднегеометрические частоты третьоктавных полос, Гц	ľ			
	-	100	125	160	200	250	315	400	200	630	800	1000	1250	1600	2000	2500	3150
1	Расчетная частотная характеристика, R, дБ	43,2	42,7	44,4	42,1	40,8	43,6	42,1	40,9	44,3	47,7	49,2	51,2	52	54,3	56,6	58,3
2	Оценочная кривая, дБ	33	36	39	42	45	48	51	52	53	54	55	56	56	56	99	56
ω	Неблагоприятные отклонения, дБ			-	1	4,2	4,4	8,9	11,1	8,7	6,3	5,8	8,4	4	1,7		
4	Оценочная кривая, смещенная вниз на 3 дБ	30	33	36	39	42	45	48	49	50	51	52	53	53	53	53	53
ν	Неблагоприятные отклонения от смещенной оценочной					1,2	1,4	5,9	8,1	5,7	3,3	2,8	1,8	1			I
9	Индекс изоляции воздушного шума R _w , дБ								49								

Таблица 2.1 - Определение частотной характеристики звукоизоляции перегородки из плит силикатных с керамзитом размером 498х115х249 маркой по прочности М125, класса средней плотности 1,2

Среднегеометрические частоты 1/3 - октавных полос f, Гц	Изоляция	воздушного п	-
	02.12.2016	05.12.2016	09.12.2016
100	43,2	44,2	43,7
125	41,7	43,5	43,2
160	43,6	45,2	44,9
200	42,6	42,8	42,6
250	40,7	41,0	40,9
315	43,1	43,5	43,7
400	41,6	42,4	42,1
500	40,8	41,1	40,9
630	44,7	44,5	44,4
800	47,6	48,1	47,8
1000	48,9	49,5	49,3
1250	51,5	51,0	51,1
1600	52,5	52,3	52,1
2000	55,1	54,9	54,8
2500	57,1	57,3	57,1
3150	58,7	58,8	58,8
Индекс изоляции воздушного	49	49	49
шума, дБ Среднее значение индекса			
изоляции воздушного шума, дБ		49	

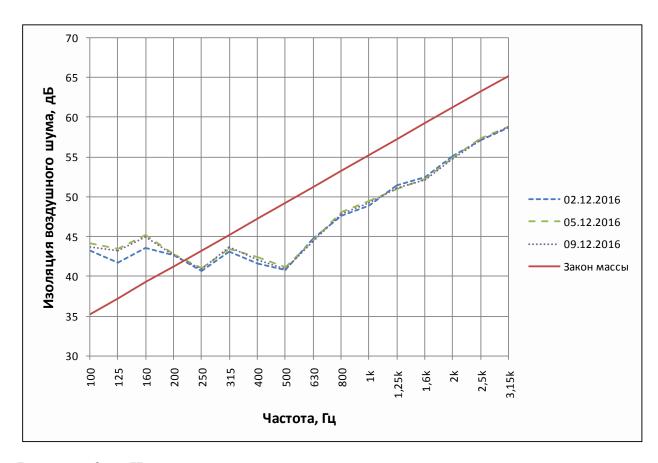


Рисунок 2 — Частотная характеристика звукоизоляции плит силикатных с керамзитом размером 498х115х249 маркой по прочности М125, класса средней плотности 1,2

Таблица 2.2 - Определение индекса изоляции воздушного шума по п. 9.4 [2] перегородки из плит силикатных с керамзитом размером 498х115х249 маркой по прочности М125 класса средней плотности 1 2 – 02 12 2016г

		100	Jam C. J	HOU HONGRAM CLEACTING CL	III odii	11100	142, IN	Ideed of	усдиси	рочности илтел, класса средней плотности 1,2 — 02.12.20101.	7,1 II 1,7	0.1.1	7.70101				
Š	Параметры				C	реднег	еометр	ически	е часто	гы тре	гьоктав	Среднегеометрические частоты третьоктавных полос, Гц	лос, Гі	Ĭ			
		100	125	160	200	250	315	400	500	630	008	1000	1250	1600	2000	2500	3150
	Расчетная частотная характеристика, R, дБ	43,2	41,7	43,6	42,6	40,7	43,1	41,6	40,8	44,7	47,6	48,9	51,5	52,5	55,1	57,1	58,7
2	Оценочная кривая, дБ	33	36	39	42	45	48	51	52	53	54	55	56	56	56	99	56
	Неблагоприятные отклонения, дБ		l	-		4,3	4,9	9,4	11,2	8,3	6,4	6,1	4,5	3,5	6,0		I
	Оценочная кривая, смещенная вниз на 3 дБ	30	33	36	39	42	45	48	49	50	51	52	53	53	53	53	53
5	Неблагоприятные отклонения от смещенной оценочной					1,3	1,9	6,4	8,2	5,3	3,4	3,1	1,5	0,5			I
9	Индекс изоляции воздушного шума R _w , дБ								49								

Таблица 2.3 - Определение индекса изоляции воздушного шума по п. 9.4 [2] перегородки из плит силикатных с керамзитом размером 498х115х249 маркой по прочности М125 класса средней плотности 1 2 – 05 12 2016г

	N ₂	470X113X247 маркои по прочности ит 1.23, класса среднеи плотности 1,4 – 03.12.20101. Среднегеометрические частоты третьоктавных полос, Гц	247 Mal	лкои пс	С	реднег	eomerp	ласса с ически	е часто	ты тред	CIM 1,2	ности јуптел, класса средней шлотности 1,2 – 05.12.2010г. Среднегеометрические частоты третьоктавных полос, Гц	2.2010 <u>1</u> лос, Гп				
	Параметры																
	•	100	125	160	200	250	315	400	200	630	800	1000	1250	1600	2000	2500	3150
I	1 характеристика, R, дБ	44,2	43,5	45,2	42,8	41	43,5	42,4	41,1	44,5	48,1	49,5	51	52,3	54,9	57,3	58,8
I	2 Оценочная кривая, дБ	33	36	39	42	45	48	51	52	53	54	55	56	56	56	56	56
13	3 Неблагоприятные отклонения, дБ	l				4	4,5	8,6	10,9	8,5	5,9	5,5	v	3,7	1,1		
I	4 Оценочная кривая, смещенная вниз на 3 дБ	30	33	36	39	42	45	48	49	50	51	52	53	53	53	53	53
	5 Неблагоприятные отклонения от смещенной оценочной					1	1,5	5,6	6,7	5,5	2,9	3,5	2	0,7			1
	6 Индекс изоляции воздушного шума R _w , дБ								49								

Таблица 2.4 - Определение индекса изоляции воздушного шума по п. 9.4 [2] перегородки из плит силикатных с керамзитом размером 498х115х249 маркой по прочности М125, класса средней плотности 1,2 – 09.12.2016г.

), t	470A1113A247 Маркон по прочности ит 123, мласса средней плотности 1,2 — 07.12.20101. 	2+7 Mar	JIVOII IIO	ıır odı	OCINI IVI	147, M	Jacoa of	СДПСИ	IDIOTIT	2,1 131.70	1./0	2.40101				
Š	Параметры)	реднег	еометр	ически	Среднегеометрические частоты третьоктавных полос, Гц	ты тре.	гьоктае	ных пс	лос, Гі	ì			
	-	100	125	160	200	250	315	400	200	630	008	1000	1250	1600	2000	2500	3150
	Расчетная частотная характеристика, R, дБ	43,7	43,2	44,9	42,6	40,9	43,7	42,1	40,9	44,4	47,8	49,3	51,1	52,1	54,8	57,1	58,8
2	Оценочная кривая, дБ	33	36	39	42	45	48	51	52	53	54	55	99	99	99	56	56
3	Неблагоприятные отклонения, дБ					4,1	4,3	8,9	11,1	8,6	6,2	5,7	4,9	3,9	1,2		
4	Оценочная кривая, смещенная вниз на 3 дБ	30	33	36	39	42	45	48	49	50	51	52	53	53	53	53	53
5	Неблагоприятные отклонения от смещенной оценочной					1,1	1,3	5,9	8,1	5,6	3,2	2,7	1,9	6,0			I
9	Индекс изоляции воздушного шума R _w , дБ								49								

4. Заключение

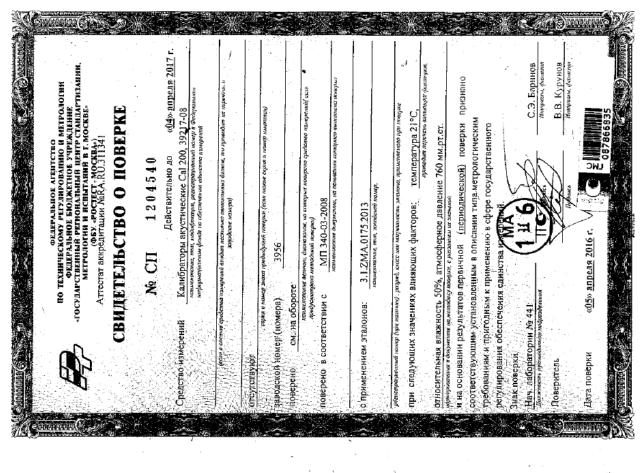
Индекс изоляции воздушного шума для конструкций, выполненных из:

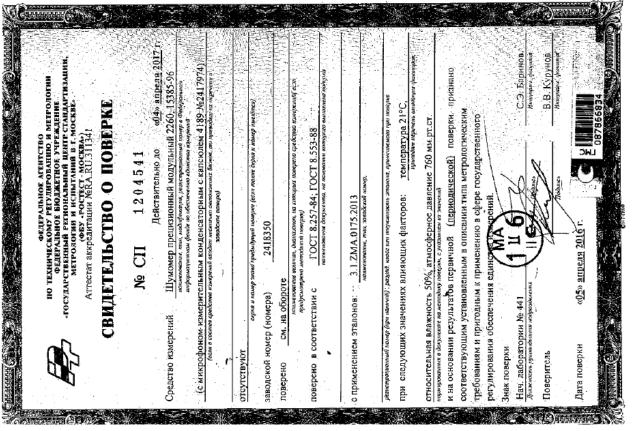
- 1) плиты перегородочной силикатной с керамзитом размером 498x115x249 маркой по прочности M150, класса средней плотности 1,2, составил R_w =49дБ;
- 2) плиты перегородочной силикатной с керамзитом размером 498x115x249 маркой по прочности M125, класса средней плотности 1,2, составил R_w =49дБ;

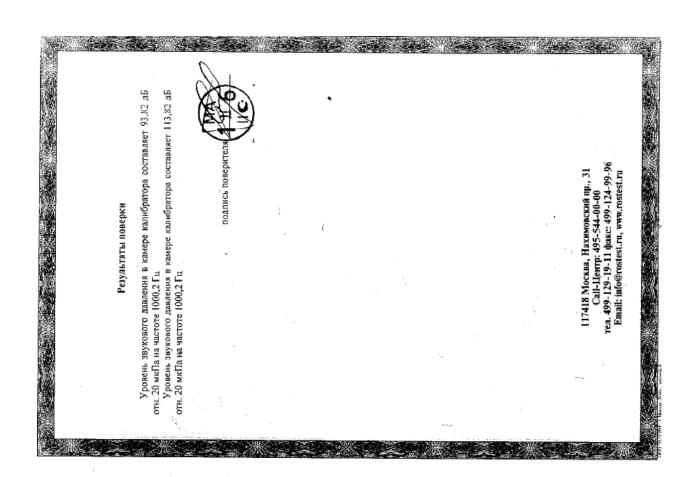
По своим акустическим характеристикам перегородки отвечают требованиям СП 51.13330.2011 Защита от шума (актуализированная редакция СНиП 23-03-2003) и могут быть использованы в строительстве при возведении следующих конструкций (таблица 3).

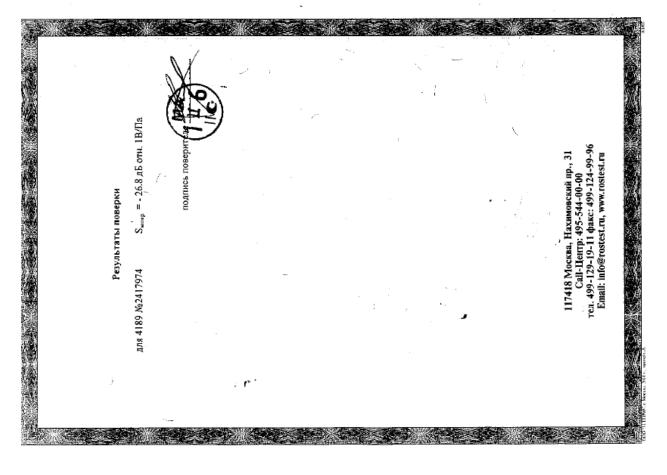
Таблица 3 - Требуемые нормативные индексы изоляции воздушного шума ограждающих конструкций [2]

Наименование и расположение ограждающей конструкции	<i>Rw,</i> дБ
Жилые здания	
1. Перегородки без дверей между комнатами, между кухней и комнатой в квартире	43
2. Перегородки между санузлом и комнатой одной квартиры	47
Административные здания, офисы	
3. Стены и перегородки между кабинетами и отделяющие кабинеты от рабочих комнат	45
4. Стены и перегородки между офисами различных фирм, между кабинетами различных фирм	48
Больницы и санатории	
5. Стены и перегородки между палатами, кабинетами врачей	48
Учебные заведения	
6. Стены и перегородки между классами, кабинетами и аудиториями и отделяющие эти помещения от помещений общего пользования	48
Детские дошкольные учреждения	
7. Стены и перегородки между групповыми комнатами, спальнями и между другими детскими комнатами	47

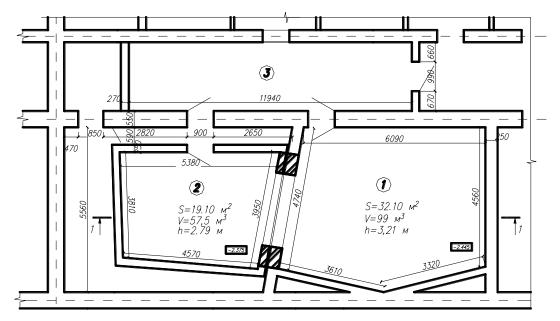

Руководитель работы д.т.н., профессор, декан инженерно-строительного факультета


L


Кочкин А.А.


Список используемой литературы

- 1. ГОСТ 27296–2012. Здания и сооружения. Методы измерения звукоизоляции ограждающих конструкций. М.: ФГУП «Стандартинформ», 2014.
- 2. Свод правил. Защита от шума: СП 51.13330.2011: актуализированная редакция СНиП 23-03-2003 / Госстрой России. М.: ГУП ЦПП, 2011. 32 с.
- 3. Свод правил по проектированию и строительству. СП 23-103-2003. Проектирование звукоизоляции ограждающих конструкций жилых и общественных зданий: утв. Госстроем России 25.12. 2003 № 217. М.: ГУП ЦПП, 2004. 35 с.
- 4. Методические указания по применению силикатных пазогребневых блоков, выпускаемых ОАО «ЯЗСК» для перегородок зданий, Ярославль 2011г.



Приложение 2

1-камера высокого уровня;

2— камера низкого уровня; 3— аппаратная.

Рисунок 5 – План больших реверберационных камер ВоГУ

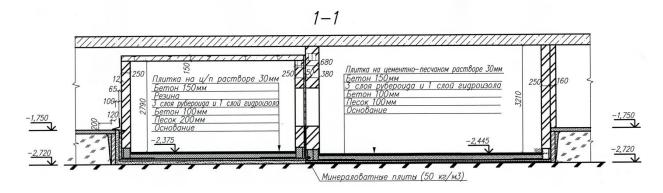


Рисунок 6 – Большие реверберационные камеры ВоГУ. Разрез 1-1

Руководитель работы: доктор технических наук,

декан ИСФ А.А. Кочкин

Исполнители: аспирант, преподаватель, А.В. Киряткова

каф. ПГС

аспирант НИИСФ Н.А. Кочкин

1. Общие данные

Основание для проведения испытаний - договор на проведение испытаний № 18-4 от 21 октября 2016 г.

Наименование продукции:

- а) плита перегородочная силикатная размером 498x115x249 маркой по прочности M150, класса средней плотности 1,4;
- б) плита перегородочная силикатная размером 498x115x249 маркой по прочности M125, класса средней плотности 1,4;

Производитель продукции - 150048, ОАО "Ярославский завод силикатного кирпича", г. Ярославль, Силикатное шоссе, д.5.

Предъявитель образцов - ОАО "Ярославский завод силикатного кирпича".

Дополнительные сведения об испытываемых образцах — кладка выполнена с применением клея монтажного «BLOCK» по методике ЯЗСК[4].

Испытания на соответствие - требованиям СП 51.13330.2011 Защита от шума (актуализированная редакция СНиП 23-03-2003).

Дата испытаний - 07.10.16 - 17.11.16

2. Методика испытания

Большие реверберационные камеры ВоГУ состоят из двух камер: камеры высокого уровня (КВУ) объемом 99 м³ и камеры низкого уровня (КНУ) объемом 57,5 м³, причем КНУ не имеет жесткой связи с КВУ и расположена на отдельно стоящем фундаменте. Время реверберации во всем частотном диапазоне превышает нормативное значение и составляет от 1,2 с. до 7,8 с. Площадь проема составляет 9 м², площадь испытуемого образца $1,2x2,5 = 3,0 \text{ м}^2$.

Измерения осуществлялись в соответствии с действующими нормами [1] с помощью шумомера и калибратора, имеющего свидетельства о поверке № СП 1204540, № СП 1204541 [приложение 1].

В реверберационных камерах ВоГУ [приложение 2] акустическая аппаратура состоит из двухканального модульного анализатора 2260 фирмы «Брюль и Къер» в реальном масштабе времени со встроенным генератором

шума, трех усилителей MAKRO 1400 и 8 звуковых колонок QS 152 в камере высокого уровня (КВУ) и 4 звуковых колонок QS 152 в камере низкого уровня (КНУ).

Анализатор 2260 с установленным программным обеспечением специализированной звукометрической платформой становится ДЛЯ измерения звукоизоляции и времени реверберации, он сохраняет в памяти данные и результаты измерений, которые передавались и обрабатывались на компьютере. Данный шумомер позволяет измерять уровень звука в КВУ (уровень L₁, дБ), уровень звука в КНУ (уровень L₂, дБ), уровень фоновых шумов в КНУ (уровень В2, дБ), который используется для коррекции уровня L₂ в расчетах воздушной изоляции, а также время реверберации (T, c) в КНУ. Проводилась серия измерений в 6 точках в каждой камере, чтобы сделать поправку на колебания звукового давления.

Полученный усредненный спектр использовался в расчете воздушной изоляции. Все измерения проводились из аппаратной.

Вычисление изоляции ограждений от воздушного шума (R) выполняли по формуле [1]:

$$R = L_1 - L_2 + 10\lg \frac{s}{A_2},$$

где L_1, L_2 - средние уровни звукового давления в помещениях высокого и низкого уровней, дБ;

S- площадь испытываемой конструкции, M^2 ;

 A_2 - общее звукопоглощение в КНУ, м².

Для рассматриваемой конструкции по методике, изложенной в п. 9.4 [2], был определен индекс изоляции воздушного шума R_w , дБ.

3. Результаты испытаний

Таблица 1.1 – Определение частотной характеристики звукоизоляции перегородки из плит силикатных размером 498x115x249 маркой по прочности M150, класса средней плотности 1,4

Среднегеометрические частоты 1/3 - октавных полос f, Гц	Изоляция	воздушного ц	•
2,0 031102312311 2101100 2, 2 4	07.10.2016	10.10.2016	14.10.2016
100	42,9	42,1	42,6
125	42,2	42,6	42,9
160	42,7	43	43,7
200	41,8	43,3	42,5
250	43,1	43,2	42,3
315	43,8	43,2	43,3
400	42,4	41,8	41,5
500	41,5	42,2	42,5
630	45,6	46,9	46,5
800	49,3	50,4	50,4
1000	49,7	50,2	50,2
1250	51,3	52	51,8
1600	53,4	53,9	53,8
2000	55,7	56,4	56,5
2500	57	57,9	58,1
3150	57,7	59,4	59,5
Индекс изоляции воздушного	50	50	50
шума, дБ Среднее значение индекса		7 0	
изоляции воздушного шума, дБ		50	

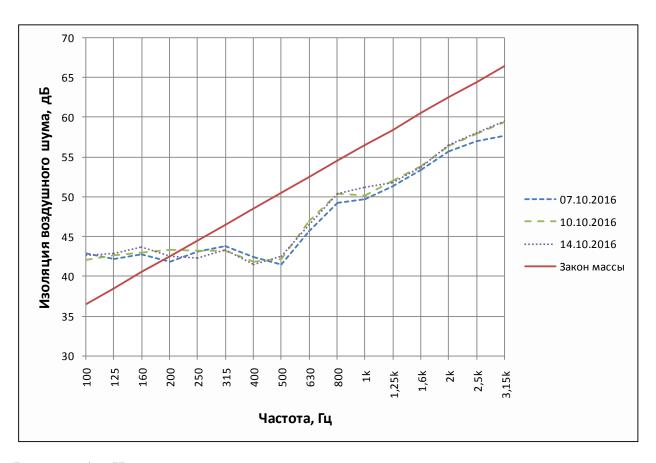


Рисунок 1 — Частотная характеристика звукоизоляции плит силикатных размером 498x115x249 маркой по прочности M150, класса средней плотности 1,4

Таблица 1.2 - Определение индекса изоляции воздушного шума по п. 9.4 [2] перегородки из плит силикатных размером 498х115х249 маркой по прочности М150, класса средней плотности 1,4 – 07.10.2016г.

		Ma	ркои пс	מרטקוו (OCTR IVE	1100, K.	lacca	реднеи	HUIOITHO	т, п	маркои по прочности імтэо, класса средней плотности 1,4 — 07.10.20101.	0.20101					
No.	• Параметры				C	реднег	еометр	ически	е часто	ты тре.	гьоктағ	зных пс	Среднегеометрические частоты третьоктавных полос, Гц	ĭ			
	-	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
	Расчетная частотная характеристика, R, дБ	42,9	42,2	42,7	41,8	43,1	43,8	42,4	41,5	45,6	49,3	49,7	51,3	53,4	55,7	57	57,7
2	Оценочная кривая, дБ	33	36	39	42	45	48	51	52	53	54	55	99	56	99	56	56
3	Неблагоприятные отклонения, дБ				0,2	1,9	4,2	8,6	10,5	7,4	4,7	5,3	4,7	2,6	0,3		
4	Оценочная кривая, смещенная вниз на 2 дБ	31	34	37	40	43	46	49	50	51	52	53	54	54	54	54	54
5	Неблагоприятные отклонения от смещенной оценочной						2,2	9,9	8,5	5,4	2,7	3,3	2,7	0,6			
9	Индекс изоляции воздушного шума R _w , дБ								50								

Таблица 1.3 - Определение индекса изоляции воздушного шума по п. 9.4 [2] перегородки из плит силикатных размером 498x115x249 маркой по прочности М150, класса средней плотности 1,4 – 10.10.2016г.

		Ma	DIVOID IIIC	nrodii '		100, 10	iacca cy	СДНСИ	LINOTH	CIN 1,1	маркои по прочности итгло, класса среднеи плотности 1,4 — 10.10.20101.	0.20101					
No.	<u>о</u> Параметры				0	реднег	еометр	ически	е часто	ты тре	rboktae	ных пс	Среднегеометрические частоты третьоктавных полос, Гц	'n			
	J	100	125	160	200	250	315	400	200	630	800	1000	1250	1600	2000	2500	3150
	Расчетная частотная характеристика, R, дБ	42,1	42,6	43	43,3	43,2	43,2	41,8	42,2	46,9	50,4	50,2	52	53,9	56,4	57,9	59,4
7	Оценочная кривая, дБ	33	36	39	42	45	48	51	52	53	54	55	56	56	99	56	56
3	Неблагоприятные отклонения, дБ					1,8	4,8	9,2	8,6	6,1	3,6	4,8	4	2,1			I
4	Оценочная кривая, смещенная вниз на 2 дБ	31	34	37	40	43	46	49	50	51	52	53	54	54	54	54	54
v	Неблагоприятные отклонения от смещенной оценочной						2,8	7,2	7,8	4,1	1,6	2,8	2	0,1			I
9	Индекс изоляции воздушного шума R _w , дБ								50								

Таблица 1.4 - Определение индекса изоляции воздушного шума по п. 9.4 [2] перегородки из плит силикатных размером 498x115x249 маркой по прочности М150, класса средней плотности 1,4 – 14.10.2016г.

		T		active address of transdature		6001	T	The state of the s		, ,,,,	:	; ;					
Ž	Параметры				C	реднег	еометр	ически	Среднегеометрические частоты третьоктавных полос, Гц	ты тре	гьоктав	ных по	лос, Гі	ĭ			
	•	100	125	160	200	250	315	400	200	630	800	1000	1250	1600	2000	2500	3150
	Расчетная частотная характеристика, R, дБ	42,6	42,9	43,7	42,5	42,3	43,3	41,5	42,5	46,5	50,4	51,2	51,8	53,8	56,5	58,1	59,5
7	Оценочная кривая, дБ	33	36	39	42	45	84	51	52	53	54	55	56	56	56	56	56
3	Неблагоприятные отклонения, дБ					2,7	4,7	9,5	9,5	6,5	3,6	3,8	4,2	2,2			
4	Оценочная кривая, смещенная вниз на 2 дБ	31	34	37	40	43	46	49	50	51	52	53	54	54	54	54	54
5	Неблагоприятные отклонения от смещенной оценочной					0,7	2,7	7,5	7,5	4,5	1,6	1,8	2,2	0,2			
9	Индекс изоляции воздушного шума R _w , дБ								50								

Таблица 2.1 – Определение частотной характеристики звукоизоляции перегородки из плит силикатных размером 498x115x249 маркой по прочности M125, класса средней плотности 1,4

Среднегеометрические частоты 1/3 - октавных полос f, Гц	Изоляция	воздушного и даты замеров	
, ,	14.11.2016	15.11.2016	17.11.2016
100	43,2	42,6	43,1
125	43,7	43,1	43,4
160	43,2	43,5	44,2
200	42,4	43,8	43
250	43,8	43,2	42,3
315	43,9	43,2	43,3
400	42,4	41,8	41,5
500	41,5	42,2	42,5
630	45,6	46,9	46,5
800	49,3	50,4	50,4
1000	49,7	50,2	50,2
1250	51,3	52	51,8
1600	53,4	53,9	53,8
2000	56	56,9	57
2500	57,6	58,4	58,6
3150	58,2	59,9	60
Индекс изоляции воздушного	50	50	50
шума, дБ Среднее значение индекса		50	
изоляции воздушного шума, дБ			

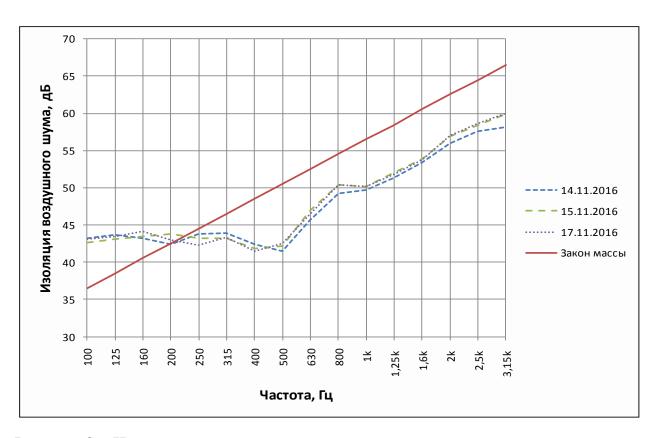


Рисунок 2 — Частотная характеристика звукоизоляции плит силикатных размером 498х115х249 маркой по прочности M125, класса средней плотности 1,4

Таблица 2.2 - Определение индекса изоляции воздушного шума по п. 9.4 [2] перегородки из плит силикатных размером 498х115х249 маркой по прочности М125. класса средней плотности 1.4—14.11.2016г.

		Ma	DIVOID IIIC	nrodii '	OCINI IVI	143, 12	iacca cy	СДНСИ	LINOTH	CIN 1,1	маркои по прочности иттел, класса среднеи плотности 1,4 — 14.11.20101.	1.20101					
No.	<u>о</u> Параметры				S	реднег	еометр	ически	Среднегеометрические частоты третьоктавных полос, Гц	ты трел	гьоктав	ных пс	лос, Гі	ì			
	J. J.	100	125	160	200	250	315	400	200	630	800	1000	1250	1600	2000	2500	3150
	Расчетная частотная характеристика, R, дБ	43,2	43,7	43,2	42,4	43,8	43,9	42,4	41,5	45,6	49,3	49,7	51,3	53,4	56	57,6	58,2
7	Оценочная кривая, дБ	33	36	39	42	45	48	51	52	53	54	55	56	56	56	56	56
3	Неблагоприятные отклонения, дБ					1,2	4,1	8,6	10,5	7,4	4,7	5,3	4,7	2,6			1
4	Оценочная кривая, смещенная вниз на 2 дБ	31	34	37	40	43	46	49	50	51	52	53	54	54	54	54	54
v	Неблагоприятные отклонения от смещенной оценочной						2,1	9,9	8,5	5,4	2,7	3,3	2,7	0,6			I
9	Индекс изоляции воздушного шума R _w , дБ								50								

Таблица 2.3 - Определение индекса изоляции воздушного шума по п. 9.4 [2] перегородки из плит силикатных размером 498х115х249 маркой по прочности М125 класса средней плотности 1 4 – 15 11 2016г

		Mal	жои пс	ньодп	ОСТИ ІМ	123, KJ	lacca ch	оеднеи	маркои по прочности М122, класса среднеи плотности 1,4 – 13.11.2016г.	СТИ 1,-	-15.1	1.20101					
Š	Параметры				O	реднег	Среднегеометрические частоты третьоктавных полос, Гц	ически	е часто	ты тре	гьоктав	ных пс	лос, Гі	¥			
		100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
1	Расчетная частотная характеристика, R, дБ	42,6	43,1	43,5	43,8	43,2	43,2	41,8	42,2	46,9	50,4	50,2	52	53,9	56,9	58,4	59,9
2	Оценочная кривая, дБ	33	36	39	42	45	48	51	52	53	54	55	99	99	99	56	56
ω	Неблагоприятные отклонения, дБ					1,8	8,4	9,2	8,6	6,1	3,6	8,4	4	2,1	-		
4	Оценочная кривая, смещенная вниз на 2 дБ	31	34	37	40	43	46	49	50	51	52	53	54	54	54	54	54
5	Неблагоприятные отклонения от смещенной оценочной						2,8	7,2	7,8	4,1	1,6	2,8	2	0,1			
9	Индекс изоляции воздушного шума R _w , дБ								50								

Таблица 2.4 - Определение индекса изоляции воздушного шума по п. 9.4 [2] перегородки из плит силикатных размером 498х115х249 маркой по прочности М125 класса средней плотности 1 4 – 17.11.2016г

		Maj	экои пс	лрочн,	OCTM IM	123, K	Tacca cl	оеднеи	маркои по прочности М125, класса среднеи плотности 1,4 – 17.11.2016г.	сти 1,4	<u>† – 1 / . 1 </u>	1.2010	:_				
$\mathcal{N}_{\underline{0}}$	Параметры				C	реднег	еометр	ически	Среднегеометрические частоты третьоктавных полос, Гц	ты тре	гьоктаг	зных пс	лос, Гі	ĭ			
	1	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
	Расчетная частотная характеристика, R, дБ	43,1	43,4	44,2	43	42,3	43,3	41,5	42,5	46,5	50,4	50,2	51,8	53,8	57	58,6	09
2	Оценочная кривая, дБ	33	36	39	42	45	48	51	52	53	54	55	99	99	99	56	56
ω	Неблагоприятные отклонения, дБ				-	2,7	4,7	9,5	9,5	6,5	3,6	8,4	4,2	2,2			
4	Оценочная кривая, смещенная вниз на 2 дБ	31	34	37	40	43	46	49	50	51	52	53	54	54	54	54	54
5	Неблагоприятные отклонения от смещенной оценочной					0,7	2,7	7,5	7,5	4,5	1,6	2,8	2,2	0,2			
9	Индекс изоляции воздушного шума R _w , дБ								50								

4. Заключение

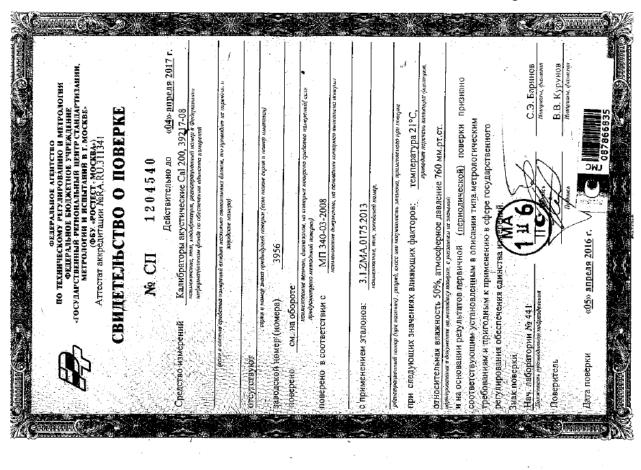
Индекс изоляции воздушного шума для конструкций, выполненных из:

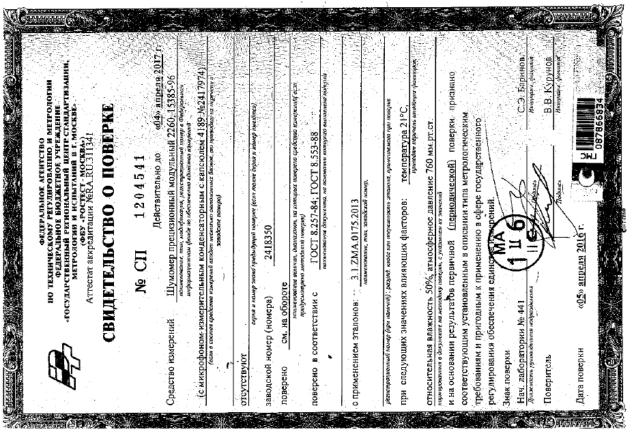
- 1) плиты перегородочной силикатной размером 498x115x249 маркой по прочности M150, класса средней плотности 1,4, составил $R_w = 50$ дБ;
- 2) плиты перегородочной силикатной размером 498x115x249 маркой по прочности M125, класса средней плотности 1,4, составил R_w = 50 дБ;

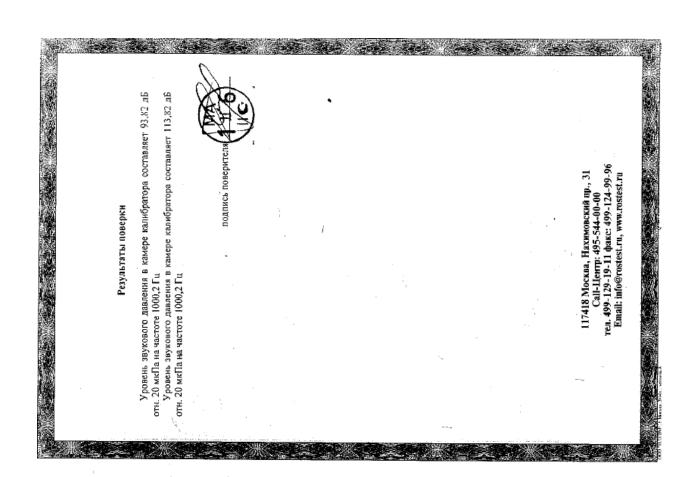
По своим акустическим характеристикам перегородки отвечают требованиям СП 51.13330.2011 Защита от шума (актуализированная редакция СНиП 23-03-2003) и могут быть использованы в строительстве при возведении следующих конструкций (таблица 3).

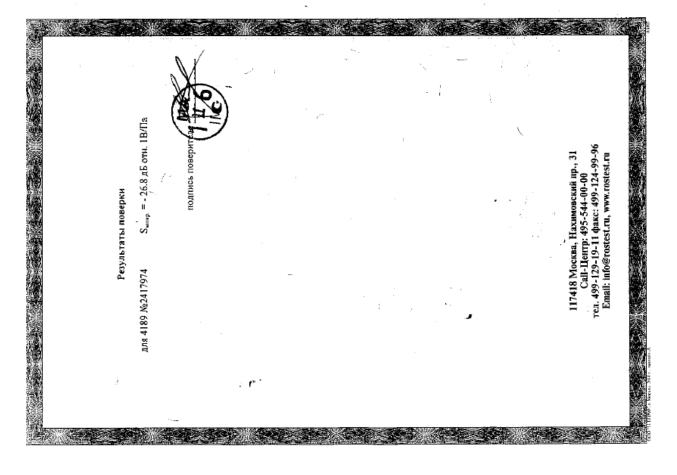
Таблица 3 - Требуемые нормативные индексы изоляции воздушного шума ограждающих конструкций [2]

Наименование и расположение ограждающей конструкции	<i>Rw,</i> дБ
Жилые здания	
1. Перегородки без дверей между комнатами, между кухней и комнатой в квартире	43
2. Перегородки между санузлом и комнатой одной квартиры	47
3. Стены и перегородки между комнатами общежитий	50
Гостиницы	
4. Стены и перегородки между номерами: - гостиницы, имеющие по международной классификации менее трех звезд	50
Административные здания, офисы	
5. Стены и перегородки между кабинетами и отделяющие кабинеты от рабочих комнат	45
б. Стены и перегородки между офисами различных фирм, между кабинетами различных фирм	48
Больницы и санатории	
7. Стены и перегородки между палатами, кабинетами врачей	48
Учебные заведения	
8. Стены и перегородки между классами, кабинетами и аудиториями и отделяющие эти помещения от помещений общего пользования	48
Детские дошкольные учреждения	
9. Стены и перегородки между групповыми комнатами, спальнями и между другими детскими комнатами	47

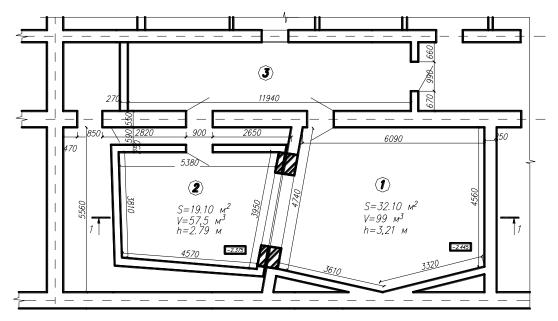

Руководитель работы д.т.н., профессор, декан инженерно-строительного факультета




Кочкин А.А.


Список используемой литературы

- 1. ГОСТ 27296–2012. Здания и сооружения. Методы измерения звукоизоляции ограждающих конструкций. М.: ФГУП «Стандартинформ», 2014.
- 2. Свод правил. Защита от шума: СП 51.13330.2011: актуализированная редакция СНиП 23-03-2003 / Госстрой России. М.: ГУП ЦПП, 2011. 32 с.
- 3. Свод правил по проектированию и строительству. СП 23-103-2003. Проектирование звукоизоляции ограждающих конструкций жилых и общественных зданий: утв. Госстроем России 25.12. 2003 № 217. М.: ГУП ЦПП, 2004. 35 с.
- 4. Методические указания по применению силикатных пазогребневых блоков, выпускаемых ОАО «ЯЗСК» для перегородок зданий, Ярославль 2011г.



Приложение 2

1-камера высокого уровня;

2— камера низкого уровня; 3— аппаратная.

Рисунок 5 – План больших реверберационных камер ВоГУ

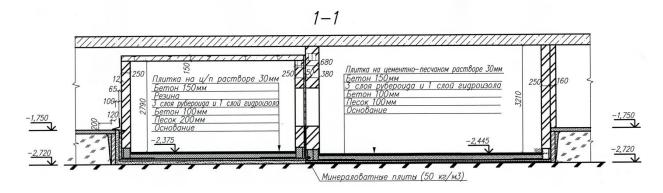


Рисунок 6 – Большие реверберационные камеры ВоГУ. Разрез 1-1